java-linkedlist 源码分析 2

### 5. 迭代器支持

`LinkedList` 实

现了 `Iterable` 接口,提供了支持迭代的功能:

```java
public Iterator<E> iterator() {
    return new ListItr(0);
}

public ListIterator<E> listIterator(int index) {
    checkPositionIndex(index);
    return new ListItr(index);
}

private class ListItr implements ListIterator<E> {
    private Node<E> lastReturned;
    private Node<E> next;
    private int nextIndex;
    private int expectedModCount = modCount;

    ListItr(int index) {
        next = (index == size) ? null : node(index);
        nextIndex = index;
    }

    public boolean hasNext() {
        return nextIndex < size;
    }

    public E next() {
        checkForComodification();
        if (!hasNext())
            throw new NoSuchElementException();

        lastReturned = next;
        next = next.next;
        nextIndex++;
        return lastReturned.item;
    }

    public boolean hasPrevious() {
        return nextIndex > 0;
    }

    public E previous() {
        checkForComodification();
        if (!hasPrevious())
            throw new NoSuchElementException();

        lastReturned = next = (next == null) ? last : next.prev;
        nextIndex--;
        return lastReturned.item;
    }

    public void remove() {
        checkForComodification();
        if (lastReturned == null)
            throw new IllegalStateException();

        Node<E> lastNext = lastReturned.next;
        unlink(lastReturned);
        if (next == lastReturned)
            next = lastNext;
        else
            nextIndex--;
        lastReturned = null;
        expectedModCount++;
    }

    public void set(E e) {
        if (lastReturned == null)
            throw new IllegalStateException();
        checkForComodification();
        lastReturned.item = e;
    }

    public void add(E e) {
        checkForComodification();
        lastReturned = null;
        if (next == null)
            linkLast(e);
        else
            linkBefore(e, next);
        nextIndex++;
        expectedModCount++;
    }

    final void checkForComodification() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }
}
```

### 6. 序列化与克隆

#### 6.1 序列化

`LinkedList` 实现了 `Serializable` 接口,允许其对象被序列化。序列化和反序列化通过 `writeObject` 和 `readObject` 方法自定义处理。

```java
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
    // Write out any hidden serialization magic
    s.defaultWriteObject();

    // Write out size
    s.writeInt(size);

    // Write out all elements in the proper order.
    for (Node<E> x = first; x != null; x = x.next)
        s.writeObject(x.item);
}

private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
    // Read in any hidden serialization magic
    s.defaultReadObject();

    // Read in size
    int size = s.readInt();

    // Read in all elements in the proper order.
    for (int i = 0; i < size; i++)
        linkLast((E) s.readObject());
}
```

- `writeObject`:序列化 `LinkedList` 对象,包括元素数量和所有元素。
- `readObject`:反序列化 `LinkedList` 对象,根据序列化的数据恢复链表结构。

#### 6.2 克隆

`LinkedList` 实现了 `Cloneable` 接口,提供了 `clone` 方法用于深度克隆。

```java
public Object clone() {
    LinkedList<E> clone = super.clone();

    // Put clone into "virgin" state
    clone.first = clone.last = null;
    clone.size = 0;
    clone.modCount = 0;

    // Initialize clone with our elements
    for (Node<E> x = first; x != null; x = x.next)
        clone.add(x.item);

    return clone;
}
```

- `clone` 方法通过 `super.clone` 创建一个新的 `LinkedList` 实例,并逐个复制元素到新实例中。

### 7. 性能分析

#### 7.1 时间复杂度

- **添加元素**:在头部或尾部添加元素的时间复杂度为 O(1)。
- **删除元素**:在头部或尾部删除元素的时间复杂度为 O(1)。
- **随机访问**:随机访问元素的时间复杂度为 O(n)。
- **插入和删除操作**:在链表中间插入和删除元素的时间复杂度为 O(n),因为需要遍历链表找到指定位置。

#### 7.2 空间复杂度

`LinkedList` 使用链表节点来存储元素,每个节点包含元素数据和前后节点的引用。因此,`LinkedList` 的空间复杂度主要取决于元素数量和节点的开销。

### 8. `LinkedList` 的缺点和使用场景

#### 8.1 缺点

- **随机访问效率低**:由于链表不支持通过索引快速访问元素,随机访问元素的时间复杂度为 O(n)。
- **额外内存开销**:每个节点需要存储前后节点的引用,因此链表的内存开销较高。

#### 8.2 使用场景

- **插入和删除操作频繁**:在需要频繁进行插入和删除操作的场景中,`LinkedList` 的性能优于 `ArrayList`。
- **元素数量动态变化**:当元素数量经常变化且需要在中间插入和删除时,`LinkedList` 是一个不错的选择。

### 9. `LinkedList` 的替代方案

在特定场景下,其他集合类可能比 `LinkedList` 更合适。例如:

- **`ArrayList`**:`ArrayList` 适用于需要频繁进行随机访问和遍历的场景,其插入和删除操作性能较低。
- **`Deque`**:双端队列(`Deque`)提供了类似 `LinkedList` 的功能,并且有多种实现,如 `ArrayDeque` 和 `LinkedList`。
- **`Stack`**:如果主要使用 `LinkedList` 的栈功能,可以考虑使用 `Stack` 类,但需要注意 `Stack` 是同步的,性能相对较低。

### 10. 总结

`LinkedList` 是 Java 集合框架中的一个重要类,提供了基于双向链表的集合实现。通过详细分析 `LinkedList` 的源码,可以更好地理解其内部机制和工作原理。`LinkedList` 适用于频繁进行插入和删除操作的场景,但在随机访问和遍历操作上性能较低。

通过深入了解 `LinkedList` 的数据结构、构造方法、核心操作、迭代器支持、序列化与克隆等,可以更有效地使用 `LinkedList` 并优化程序性能。同时,了解其局限性和替代方案,有助于在不同应用场景中选择最合适的集合类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/776507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

三相感应电机的建模仿真(2)基于ABC相坐标系S-Fun的仿真模型

1. 概述 2. 三相感应电动机状态方程式 3. 基于S-Function的仿真模型建立 4. 瞬态分析实例 5. 总结 6. 参考文献 1. 概述 前面建立的三相感应电机在ABC相坐标系下的数学模型是一组周期性变系数微分方程&#xff08;其电感矩阵是转子位置角的函数&#xff0c;转子位置角随时…

【Python】基于KMeans的航空公司客户数据聚类分析

&#x1f490;大家好&#xff01;我是码银~&#xff0c;欢迎关注&#x1f490;&#xff1a; CSDN&#xff1a;码银 公众号&#xff1a;码银学编程 实验目的和要求 会用Python创建Kmeans聚类分析模型使用KMeans模型对航空公司客户价值进行聚类分析会对聚类结果进行分析评价 实…

面向物联网行业的异常监控追踪技术解决方案:技术革新与运维保障

在现代高度数字化和互联的环境中&#xff0c;物联网技术已经深入到我们生活的方方面面。特别是在家庭和工业环境中&#xff0c;物联网系列通讯作为连接各类设备的关键枢纽&#xff0c;其稳定性和可靠性显得尤为重要。本文将介绍一种创新的监控系统&#xff0c;旨在实时跟踪和分…

用Python轻松转换PDF为CSV

数据的可访问性和可操作性是数据管理的核心要素。PDF格式因其跨平台兼容性和版面固定性&#xff0c;在文档分享和打印方面表现出色&#xff0c;尤其适用于报表、调查结果等数据的存储。然而&#xff0c;PDF的非结构化特性限制了其在数据分析领域的应用。相比之下&#xff0c;CS…

DFS之剪枝与优化——AcWing 165. 小猫爬山

DFS之剪枝与优化 定义 DFS之剪枝与优化指的是在执行深度优先搜索(DFS, Depth-First Search)时&#xff0c;采取的一系列策略来减少搜索空间&#xff0c;避免无效计算&#xff0c;从而加速找到问题的解。剪枝是指在搜索过程中&#xff0c;当遇到某些条件不符合解的要求或者可以…

Day05-02-Jenkins-pipeline

Day05-02-Jenkins-pipeline 1. Jenkins-Pipeline概述1) pipeline? 2. pipeline格式3. 小试牛刀4. Java上线的项目4.1 流程汇总4.2 根据流程书写pipeline架构4.3 分步实现1&#xff09;拉取代码2&#xff09;检查,编译,部署 4.4 完整pipeline代码 5. 根据tag标签拉取代码(了解自…

FreeBSD@ThinkPad x250因电池耗尽关机后无法启动的问题存档

好几次碰到电池耗尽FreeBSD关机&#xff0c;再启动&#xff0c;网络通了之后到了该出Xwindows窗体的时候&#xff0c;屏幕灭掉&#xff0c;网络不通&#xff0c;只有风扇在响&#xff0c;启动失败。关键是长按开关键后再次开机&#xff0c;还是启动失败。 偶尔有时候重启到单人…

温州网站建设方案及报价

随着互联网的发展&#xff0c;网站建设已经成为企业推广和营销的重要手段。温州作为中国经济发达地区之一&#xff0c;各行各业企业纷纷意识到网站建设的重要性&#xff0c;纷纷加大网站建设工作的投入。那么&#xff0c;温州网站建设方案及报价是怎样的呢&#xff1f;下面我们…

深入理解C# log4Net日志框架:功能、使用方法与性能优势

文章目录 1、log4Net的主要特性2、log4Net框架详解配置日志级别 3、log4Net的使用示例4、性能优化与对比5、总结与展望 在软件开发过程中&#xff0c;日志记录是一个不可或缺的功能。它可以帮助开发者追踪错误、监控应用程序性能&#xff0c;以及进行调试。在C#生态系统中&…

C#运算符重载

1、运算符重载 运算符重载是指重定义C#内置的运算符。 程序员也可以使用用户自定义类型的运算符。重载运算符是具有特殊名称的函数&#xff0c;是通过关键字 operator 后跟运算符的符号来定义的。与其他函数一样&#xff0c;重载运算符有返回类型和参数列表。 2、在Box类中定义…

C++ volatile 关键字

C volatile &#xff08;只有release下才会生效&#xff09; 1、告诉编译器volatile修饰的变量不要进行指令顺序的优化&#xff0c;以保证代码编写者的真实意图&#xff1b; int a 0;int b 10;int c 100;int* p &a;p &b;p &c;如果不加volatile修饰 p , 编译…

团队编程:提升代码质量与知识共享的利器

目录 前言1. 什么是团队编程&#xff1f;1.1 团队编程的起源1.2 团队编程的工作流程 2. 团队编程的优势2.1 提高代码质量2.2 促进知识共享2.3 增强团队协作2.4 提高开发效率 3. 团队编程的挑战3.1 开发成本较高3.2 需要良好的团队协作3.3 个人风格和习惯的差异3.4 长时间的集中…

AI时代算法面试:揭秘高频算法问题与解答策略

三种决策树算法的特点和区别 ID3算法&#xff1a;基本的决策树算法&#xff0c;适用于简单的分类问题C4.5算法&#xff1a;改进了ID3算法&#xff0c;适用于更复杂的分类问题&#xff0c;可以处理连续型数据和缺失值CART算法&#xff1a;更加通用的决策树算法&#xff0c;适用于…

【机器学习】机器学习与自然语言处理的融合应用与性能优化新探索

引言 自然语言处理&#xff08;NLP&#xff09;是计算机科学中的一个重要领域&#xff0c;旨在通过计算机对人类语言进行理解、生成和分析。随着深度学习和大数据技术的发展&#xff0c;机器学习在自然语言处理中的应用越来越广泛&#xff0c;从文本分类、情感分析到机器翻译和…

VBA常用的字符串内置函数

前言 在VBA程序中&#xff0c;常用的内置函数可以按照功能分为字符串函数、数字函数、转换函数等等&#xff0c;本节主要会介绍常用的字符串的内置函数&#xff0c;包括Len()、Left()、Mid()、Right()、Split()、String()、StrConV()等。 本节的练习数据表以下表为例&#xff…

前后端的导入、导出、模板下载等写法

导入&#xff0c;导出、模板下载等的前后端写法 文章目录 导入&#xff0c;导出、模板下载等的前后端写法一、导入实现1.1 后端的导入1.2 前端的导入 二、基础的模板下载2.1 后端的模板下载-若依基础版本2.2 前端的模板下载2.3 后端的模板下载 - 基于资源文件读取2.4 excel制作…

使用maven搭建一个SpingBoot项目

1.首先创建一个maven项目 注意选择合适的jdk版本 2.添加依赖 2.在pom.xml中至少添加依赖 spring-boot-starter-web 依赖&#xff0c;目的是引入Tomcat&#xff0c;以及SpringMVC等&#xff0c;使项目具有web功能。 <!-- 引入 包含tomcat&#xff0c;SpringMVC&#xff0c…

二维Gamma分布的激光点云去噪

目录 1、Gamma 分布简介2、实现步骤 1、Gamma 分布简介 Gamma 分布在合成孔径雷达( Synthetic Aperture &#xff32;adar&#xff0c;SA&#xff32;) 图像分割中具有广泛应用&#xff0c;较好的解决了SA&#xff32; 图像中相干斑噪声对图像分割的影响。采用二维Gamma 分布对…

配置基于不同端口的虚拟主机

更改配置文件&#xff0c;添加三个不同端口的虚拟主机 <directory /www> allowoverride none require all granted </directory><virtualhost 192.168.209.136:80> documentroot /www servername 192.168.209.136 </virtualhost><virtualhost 192.…

详解yolov5的网络结构

转载自文章 网络结构图&#xff08;简易版和详细版&#xff09; 此图是博主的老师&#xff0c;杜老师的图 网络框架介绍 前言&#xff1a; YOLOv5是一种基于轻量级卷积神经网络&#xff08;CNN&#xff09;的目标检测算法&#xff0c;整体可以分为三个部分&#xff0c; ba…